151 research outputs found

    One among many: ODF2 isoform 9, a.k.a. Cenexin-1, is required for ciliogenesis

    Get PDF
    Comment on: Essential role of Cenexin1, but not Odf2, in ciliogenesis. [Cell Cycle. 2013

    Multiplying madly: deacetylases take charge of centrosome duplication and amplification

    Get PDF
    Comment on: Ling H, et al. Cell Cycle 2012; 11:3779–91; PMID:23022877; http://dx.doi.org/10.4161/cc.2198

    Centrosome-intrinsic mechanisms modulate centrosome integrity during fever

    Get PDF
    The centrosome is critical for cell division, ciliogenesis, membrane trafficking, and immunological synapse function. The immunological synapse is part of the immune response, which is often accompanied by fever/heat stress (HS). Here we provide evidence that HS causes deconstruction of all centrosome substructures primarily through degradation by centrosome-associated proteasomes. This renders the centrosome nonfunctional. Heat-activated degradation is centrosome selective, as other nonmembranous organelles (midbody, kinetochore) and membrane-bounded organelles (mitochondria) remain largely intact. Heat-induced centrosome inactivation was rescued by targeting Hsp70 to the centrosome. In contrast, Hsp70 excluded from the centrosome via targeting to membranes failed to rescue, as did chaperone inactivation. This indicates that there is a balance between degradation and chaperone rescue at the centrosome after HS. This novel mechanism of centrosome regulation during fever contributes to immunological synapse formation. Heat-induced centrosome inactivation is a physiologically relevant event, as centrosomes in leukocytes of febrile patients are disrupted. Cell Biology under license from the author(s)

    Human basal body basics

    Get PDF
    In human cells, the basal body (BB) core comprises a ninefold microtubule-triplet cylindrical structure. Distal and subdistal appendages are located at the distal end of BB, where they play indispensable roles in cilium formation and function. Most cells that arrest in the G0 stage of the cell cycle initiate BB docking at the plasma membrane followed by BB-mediated growth of a solitary primary cilium, a structure required for sensing the extracellular environment and cell signaling. In addition to the primary cilium, motile cilia are present in specialized cells, such as sperm and airway epithelium. Mutations that affect BB function result in cilia dysfunction. This can generate syndromic disorders, collectively called ciliopathies, for which there are no effective treatments. In this review, we focus on the features and functions of BBs and centrosomes in Homo sapiens

    Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas

    Get PDF
    Centrosomes play critical roles in processes that ensure proper segregation of chromosomes and maintain the genetic stability of human cells. They contribute to mitotic spindle organization and regulate aspects of cytokinesis and cell cycle progression. We and others have shown that centrosomes are abnormal in most aggressive carcinomas. Moreover, centrosome defects have been implicated in chromosome instability and loss of cell cycle control in invasive carcinoma. Others have suggested that centrosome defects only occur late in tumorigenesis and may not contribute to early steps of tumor development. To address this issue, we examined pre-invasive human carcinoma in situ lesions for centrosome defects and chromosome instability. We found that a significant fraction of precursor lesions to some of the most common human cancers had centrosome defects, including in situ carcinomas of the uterine cervix, prostate, and female breast. Moreover, centrosome defects occurred together with mitotic spindle defects, chromosome instability, and high cytologic grade. Because most pre-invasive lesions are not uniformly mutant for p53, the development of centrosome defects does not appear to require abrogation of p53 function. Our findings demonstrate that centrosome defects occur concurrently with chromosome instability and cytologic changes in the earliest identifiable step in human cancer. Our results suggest that centrosome defects may contribute to the earliest stages of cancer development through the generation of chromosome instability. This, together with ongoing structural changes in chromosomes, could accelerate accumulation of alleles carrying pro-oncogenic mutations and loss of alleles containing wild-type tumor suppressor genes and thus accelerate the genomic changes characteristic of carcinoma, the most prevalent human cancer

    Direct Interaction of Pericentrin with Cytoplasmic Dynein Light Intermediate Chain Contributes to Mitotic Spindle Organization

    Get PDF
    Pericentrin is a conserved protein of the centrosome involved in microtubule organization. To better understand pericentrin function, we overexpressed the protein in somatic cells and assayed for changes in the composition and function of mitotic spindles and spindle poles. Spindles in pericentrin-overexpressing cells were disorganized and mispositioned, and chromosomes were misaligned and missegregated during cell division, giving rise to aneuploid cells. We unexpectedly found that levels of the molecular motor cytoplasmic dynein were dramatically reduced at spindle poles. Cytoplasmic dynein was diminished at kinetochores also, and the dynein-mediated organization of the Golgi complex was disrupted. Dynein coimmunoprecipitated with overexpressed pericentrin, suggesting that the motor was sequestered in the cytoplasm and was prevented from associating with its cellular targets. Immunoprecipitation of endogenous pericentrin also pulled down cytoplasmic dynein in untransfected cells. To define the basis for this interaction, pericentrin was coexpressed with cytoplasmic dynein heavy (DHCs), intermediate (DICs), and light intermediate (LICs) chains, and the dynamitin and p150Glued subunits of dynactin. Only the LICs coimmunoprecipitated with pericentrin. These results provide the first physiological role for LIC, and they suggest that a pericentrin–dynein interaction in vivo contributes to the assembly, organization, and function of centrosomes and mitotic spindles

    Functional Analysis of Tpr: Identification of Nuclear Pore Complex Association and Nuclear Localization Domains and a Role in mRNA Export

    Get PDF
    Tpr is a 270-kD coiled-coil protein localized to intranuclear filaments of the nuclear pore complex (NPC). The mechanism by which Tpr contributes to the structure and function of the nuclear pore is currently unknown. To gain insight into Tpr function, we expressed the full-length protein and several subdomains in mammalian cell lines and examined their effects on nuclear pore function. Through this analysis, we identified an NH2-terminal domain that was sufficient for association with the nucleoplasmic aspect of the NPC. In addition, we unexpectedly found that the acidic COOH terminus was efficiently transported into the nuclear interior, an event that was apparently mediated by a putative nuclear localization sequence. Ectopic expression of the full-length Tpr caused a dramatic accumulation of poly(A)+ RNA within the nucleus. Similar results were observed with domains that localized to the NPC and the nuclear interior. In contrast, expression of these proteins did not appear to affect nuclear import. These data are consistent with a model in which Tpr is tethered to intranuclear filaments of the NPC by its coiled coil domain leaving the acidic COOH terminus free to interact with soluble transport factors and mediate export of macromolecules from the nucleus

    Mitochondrial Association of a Plus End–Directed Microtubule Motor Expressed during Mitosis in Drosophila

    Get PDF
    The kinesin superfamily is a large group of proteins (kinesin-like proteins [KLPs]) that share sequence similarity with the microtubule (MT) motor kinesin. Several members of this superfamily have been implicated in various stages of mitosis and meiosis. Here we report our studies on KLP67A of Drosophila. DNA sequence analysis of KLP67A predicts an MT motor protein with an amino-terminal motor domain. To prove this directly, KLP67A expressed in Escherichia coli was shown in an in vitro motility assay to move MTs in the plus direction. We also report expression analyses at both the mRNA and protein level, which implicate KLP67A in the localization of mitochondria in undifferentiated cell types. In situ hybridization studies of the KLP67A mRNA during embryogenesis and larval central nervous system development indicate a proliferation-specific expression pattern. Furthermore, when affinity-purified anti-KLP67A antisera are used to stain blastoderm embryos, mitochondria in the region of the spindle asters are labeled. These data suggest that KLP67A is a mitotic motor of Drosophila that may have the unique role of positioning mitochondria near the spindle

    Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression

    Get PDF
    Factors that determine the biological and clinical behavior of prostate cancer are largely unknown. Prostate tumor progression is characterized by changes in cellular architecture, glandular organization, and genomic composition. These features are reflected in the Gleason grade of the tumor and in the development of aneuploidy. Cellular architecture and genomic stability are controlled in part by centrosomes, organelles that organize microtubule arrays including mitotic spindles. Here we demonstrate that centrosomes are structurally and numerically abnormal in the majority of prostate carcinomas. Centrosome abnormalities increase with increasing Gleason grade and with increasing levels of genomic instability. Selective induction of centrosome abnormalities by elevating levels of the centrosome protein pericentrin in prostate epithelial cell lines reproduces many of the phenotypic characteristics of high-grade prostate carcinoma. Cells that transiently or permanently express pericentrin exhibit severe centrosome and spindle defects, cellular disorganization, genomic instability, and enhanced growth in soft agar. On the basis of these observations, we propose a model in which centrosome dysfunction contributes to the progressive loss of cellular and glandular architecture and increasing genomic instability that accompany prostate cancer progression, dissemination, and lethality

    Multipolar mitosis and aneuploidy after chrysotile treatment: a consequence of abscission failure and cytokinesis regression

    Get PDF
    Chrysotile, like other types of asbestos, has been associated with mesothelioma, lung cancer and asbestosis. However, the cellular abnormalities induced by these fibers involved in cancer development have not been elucidated yet. Previous works show that chrysotile fibers induce features of cancer cells, such as aneuploidy, multinucleation and multipolar mitosis. In the present study, normal and cancer derived human cell lines were treated with chrysotile and the cellular and molecular mechanisms related to generation of aneuploid cells was elucidated. The first alteration observed was cytokinesis regression, the main cause of multinucleated cells formation and centrosome amplification. The multinucleated cells formed after cytokinesis regression were able to progress through cell cycle and generated aneuploid cells after abnormal mitosis. To understand the process of cytokinesis regression, localization of cytokinetic proteins was investigated. It was observed mislocalization of Anillin, Aurora B, Septin 9 and Alix in the intercellular bridge, and no determination of secondary constriction and abscission sites. Fiber treatment also led to overexpression of genes related to cancer, cytokinesis and cell cycle. The results show that chrysotile fibers induce cellular and molecular alterations in normal and tumor cells that have been related to cancer initiation and progression, and that tetraploidization and aneuploid cell formation are striking events after fiber internalization, which could generate a favorable context to cancer development
    corecore